Primeness in Near - rings of Continuous Functions 2

نویسنده

  • G. L. Booth
چکیده

This paper is a continuation of work done by the present author together with P. R. Hall [1]. We characterise the prime and equiprime radicals of N0(G) for certain topological groups G. Various results are obtained concerning primeness and strongly primeness for the sandwich near-ring N0(G,X, θ). MSC 2000: 16Y30, 22A05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primeness in Near-rings of Continuous Functions

Various types of primeness have been considered for near-rings. One of these is the concept of equiprime, which was defined in 1990 by Booth, Groenewald and Veldsman. We will investigate when the near-ring N0(G) of continuous zeropreserving self maps of a topological group G is equiprime. This is the case when G is either T0 and 0-dimensional or T0 and arcwise connected. We also give conditions...

متن کامل

FUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS

In this paper, for a complete lattice L, we introduce interval-valued L-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.

متن کامل

Generalized Rings of Measurable and Continuous Functions

This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.

متن کامل

On 3-prime Near-rings with Generalized Derivations

We prove some theorems in the setting of a 3-prime near-ring admitting a suitably constrained generalized derivation, thereby extending some known results on derivations. Moreover, we give an example proving that the hypothesis of 3-primeness is necessary.

متن کامل

Countable composition closedness and integer-valued continuous functions in pointfree topology

‎For any archimedean$f$-ring $A$ with unit in whichbreak$awedge‎ ‎(1-a)leq 0$ for all $ain A$‎, ‎the following are shown to be‎ ‎equivalent‎: ‎ ‎1‎. ‎$A$ is isomorphic to the $l$-ring ${mathfrak Z}L$ of all‎ ‎integer-valued continuous functions on some frame $L$‎. 2‎. ‎$A$ is a homomorphic image of the $l$-ring $C_{Bbb Z}(X)$‎ ‎of all integer-valued continuous functions‎, ‎in the usual se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005